The interstellar oxygen crisis, or where have all the oxygen atoms gone?

Wang, Shu; Li, Aigen; Jiang, B. W.

China, United States

Abstract

The interstellar medium (ISM) seems to have a significant surplus of oxygen which was dubbed as the `O crisis': independent of the adopted interstellar reference abundance, the total number of O atoms depleted from the gas phase far exceeds that tied up in solids by as much as ∼160 ppm of O/H. Recently, it has been hypothesized that the missing O could be hidden in μm-sized H2O ice grains. We examine this hypothesis by comparing the infrared (IR) extinction and far-IR emission arising from these grains with that observed in the Galactic diffuse ISM. We find that it is possible for the diffuse ISM to accommodate ∼160 ppm of O/H in μm-sized H2O ice grains without violating the observational constraints including the absence of the 3.1 μm O-H absorption feature. More specifically, H2O ice grains of radii ∼4 μm and O/H = 160 ppm are capable of accounting for the observed flat extinction at ∼3-8 μm and produce no excessive emission in the far-IR. These grains could be present in the diffuse ISM through rapid exchange of material between dense molecular clouds where they form and diffuse clouds where they are destroyed by photosputtering.

2015 Monthly Notices of the Royal Astronomical Society
Planck 44