The CoRoT chemical peculiar target star HD 49310
Paunzen, E.; Weiss, W. W.; Fröhlich, H. -E.; Netopil, M.; Lüftinger, T.
Czech Republic, Germany, Austria
Abstract
Context. The magnetic chemically peculiar (CP) stars of the upper main sequence are well-suited laboratories for investigating the influence of local magnetic fields on the stellar surface because they produce inhomogeneities (spots) that can be investigated in detail as the star rotates.
Aims: We studied the inhomogeneous surface structure of the CP2 star HD 49310 based on high-quality CoRoT photometry obtained during 25 days. The data have nearly no gaps. This analysis is similar to a spectroscopic Doppler-imaging analysis, but it is not a tomographic method.
Methods: We performed detailed light-curve fitting in terms of stationary circular bright spots. Furthermore, we derived astrophysical parameters with which we located HD 49310 within the Hertzsprung-Russell diagram. We also investigated the possible connection of this star to the nearby young open cluster NGC 2264.
Results: With a Bayesian technique, we produced a surface map that shows six bright spots. After removing some artefacts, the residuals of the observed and synthetic photometric data are ± 0.123 mmag. The rotational period of the star is P = 1.91909 ± 0.00001 days. Our photometric observations therefore cover about 13 full rotational cycles. Three spots are very large with diameters of ≃ 40deg. The spots are brighter by 40% than the unperturbed stellar photosphere.
Conclusions: HD 49310 is a classical silicon (CP2) star with a mass of about 3 M⊙. It is not a member of NGC 2264. Our analysis shows the potential of using high-quality photometric data to analyse the surface structure of CP stars. A comprehensive analysis of similar archival data, preferrably from space missions, would contribute significantly to our understanding of surface phenomena of CP stars and their temporal evolution.