Using Multiple-viewpoint Observations to Determine the Interaction of Three Coronal Mass Ejections Observed on 2012 March 5

Vourlidas, Angelos; Colaninno, Robin C.

United States

Abstract

We examine the interaction of three coronal mass ejections (CMEs) that took place on 2012 March 5 at heights less than 20 R in the corona. We used a forward fitting model to reconstruct the three-dimensional trajectories and kinematics of the CMEs and determine their interaction in the observations from three viewpoints: Solar and Heliospheric Observatory (SOHO), STEREO-A, and STEREO-B. The first CME (CME-1), a slow-rising eruption near disk center, is already in progress at 02:45 UT when the second CME (CME-2) erupts from AR 11429 on the east limb. These two CMEs are present in the corona not interacting when a third CME (CME-3) erupts from AR 11429 at 03:34 UT. CME-3 has a constant velocity of 1456[±31] km s-1 and drives a shock that is observed as a halo from all viewpoints. We find that the shock driven by CME-3 passed through CME-1 with no observable change in the geometry, trajectory, or velocity of CME-1. However, the elevated temperatures detected in situ when CME-1 reached Earth indicate that the plasma inside CME-1 may have been heated by the passage of the shock. CME-2 is accelerated by CME-3 to more than twice its initial velocity and remains a separate structure ahead of the CME-3 front. CME-2 is deflected 24° northward by CME-3 for a total deflection of 40° from its source region. These results suggest that the collision of CME-2 and CME-3 is superelastic. This work demonstrates the capability and utility of fitting forward models to complex and interacting CMEs observed in the corona from multiple viewpoints.

2015 The Astrophysical Journal
SOHO 32