Recovery of time evolution of Grad-Shafranov equilibria from single-spacecraft data: Benchmarking and application to a flux transfer event

Hasegawa, Hiroshi; Sonnerup, Bengt U. Ã. -.; Nakamura, Takuma K. M.

Japan, United States

Abstract

First results are presented of a method, developed by Sonnerup and Hasegawa (2010), for analyzing time evolution of magnetohydrostatic Grad-Shafranov (GS) equilibria, using data recorded by an observing probe as it traverses a quasi-static, two-dimensional (2D), magnetic-field/plasma structure. The method recovers spatial initial values used in the classical GS reconstruction for an interval before and after the time of actual measurements, by advancing them backward and forward in time based on a set of equations for an incompressible plasma; the consequence is generation of multiple GS maps or a movie of the 2D field structure. The method is successfully benchmarked by use of a 2D magnetohydrodynamic simulation of time-dependent magnetic reconnection, and then is applied to a flux transfer event (FTE) seen by the Cluster spacecraft at the dayside high-latitude magnetopause. The application shows that the field lines constituting the FTE flux rope were contracting toward its center as a result of modest convective flow in the region around the core of the flux rope.

2010 Journal of Geophysical Research (Space Physics)
Cluster 11