Detection of Phosphorus, Sulphur, and Zinc in the Carbon-enhanced Metal-poor Star BD+44 493

Beers, Timothy C.; Placco, Vinicius M.; Roederer, Ian U.

United States

Abstract

The carbon-enhanced metal-poor star BD+44°493 ([Fe/H] = -3.9) has been proposed as a candidate second-generation star enriched by metals from a single Pop III star. We report the first detections of P and S and the second detection of Zn in any extremely metal-poor carbon-enhanced star, using new spectra of BD+44°493 collected by the Cosmic Origins Spectrograph on the Hubble Space Telescope. We derive [P/Fe] = -0.34 ± 0.21, [S/Fe] = +0.07 ± 0.41, and [Zn/Fe] = -0.10 ± 0.24. We increase by 10-fold the number of Si I lines detected in BD+44°493, yielding [Si/Fe] = +0.15 ± 0.22. The [S/Fe] and [Zn/Fe] ratios exclude the hypothesis that the abundance pattern in BD+44°493 results from depletion of refractory elements onto dust grains. Comparison with zero-metallicity supernova (SN) models suggests that the stellar progenitor that enriched BD+44°493 was massive and ejected much less than 0.07 M of 56Ni, characteristic of a faint SN.

Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under NASA contract NAS 5-26555. These observations are associated with program GO-14231.

2016 The Astrophysical Journal
eHST 30