Morpho-kinematic Analysis of the Point-symmetric, Bipolar Planetary Nebulae Hb 5 and K 3-17, A Pathway to Poly-polarity
López, J. A.; Steffen, W.; García-Díaz, Ma. T.; Richer, M. G.; Riesgo, H.
Mexico
Abstract
The kinematics of the bipolar planetary nebulae Hb 5 and K 3-17 are investigated in detail by means of a comprehensive set of spatially resolved high spectral resolution, long-slit spectra. Both objects share particularly interesting characteristics, such as a complex filamentary, rosette-type nucleus, axial point-symmetry, and very fast bipolar outflows. The kinematic information of Hb 5 is combined with Hubble Space Telescope imagery to construct a detailed three-dimensional model of the nebula using the code SHAPE. The model shows that the large-scale lobes are growing in a non-homologous way. The filamentary loops in the core are proven to actually be secondary lobes emerging from what appears to be a randomly punctured, dense, gaseous core and the material that forms the point-symmetric structure flows within the lobes with a distinct kinematic pattern and its interaction with the lobes has had a shaping effect on them. Hb 5 and K 3-17 may represent a class of fast evolving planetary nebulae that will develop poly-polar characteristics once the nebular core evolves and expands.