Stellar variability in Gaia DR3. I. Three-band photometric dispersions for 145 million sources
Caballero, J. A.; Maíz Apellániz, J.; Holgado, G.; Pantaleoni González, M.
Spain
Abstract
Context. The unparalleled characteristics of Gaia photometry in terms of calibration, stability, time span, dynamic range, full-sky coverage, and complementary information make it an excellent choice to study stellar variability.
Aims: We aim to measure the photometric dispersion in the G, GBP, and GRP bands of the 145 677 450 third Gaia data release (DR3) five-parameter sources with G ≤ 17 mag and GBP - GRP between −1.0 and 8.0 mag. We will use that unbiased sample to analyze stellar variability in the Milky Way (MW), Large Magellanic Cloud (LMC), and Small Magellanic Cloud (SMC).
Methods: For each band we convert from magnitude uncertainties to observed photometric dispersions, calculate the instrumental component as a function of apparent magnitude and color, and use it to transform the observed dispersions into the astrophysical ones: sG, SGBP, and SGRP. We give variability indices in the three bands for the whole sample indicating whether the objects are non-variable, marginally variable, or clearly so. We use the subsample established by Rimoldini and collaborators with light curves and variability types to calibrate our results and establish their limitations.
Results: The position of an object in the dispersion-dispersion planes can be used to constrain its variability type, a direct application of these results. We use information from the MW, LMC, and SMC color-absolute magnitude diagrams (CAMDs) to discuss variability across the Hertzsprung-Russell diagram. White dwarfs and B-type subdwarfs are more variable than main sequence (MS) or red clump (RC) stars, with a flat distribution in sG up to 10 mmag and with variability decreasing for the former with age. The MS region in the Gaia CAMD includes a mixture of populations from the MS itself and from other evolutionary phases. Its sG distribution peaks at low values (~1-2 mmag) but it has a large tail dominated by eclipsing binaries, RR Lyrae stars, and young stellar objects. RC stars are characterized by little variability, with their sG distribution peaking at 1 mmag or less. The stars in the pre-main-sequence (PMS) region are highly variable, with a power law distribution in sG with slope 2.75 and a cutoff for values lower than 7 mmag. The luminous red stars region of the Gaia CAMD has the highest variability, with its extreme dominated by AGB stars and with a power law in sG with slope ~2.2 that extends from there to a cutoff of 7 mmag. We show that our method can be used to search for LMC Cepheids. We analyze four stellar clusters with O stars (Villafranca O-016, O-021, O-024, and O-026) and detect a strong difference in sG between stars that are already in the MS and those that are still in the PMS.