Interplanetary Coronal Mass Ejections as the Driver of Non-recurrent Forbush Decreases

Papaioannou, Athanasios; Belov, Anatoly; Abunina, Maria; Anastasiadis, Anastasios; Eroshenko, Eugenia; Abunin, Artem; Patsourakos, Spiros; Mavromichalaki, Helen

Greece, Russia

Abstract

Interplanetary coronal mass ejections (ICMEs) are the counterparts of coronal mass ejections (CMEs) that extend in the interplanetary (IP) space and interact with the underlying solar wind (SW). ICMEs and their corresponding shocks can sweep out galactic cosmic rays (GCRs) and thus modulate their intensity, resulting in non-recurrent Forbush decreases (FDs). In this work, we selected all FDs that were associated with a sudden storm commencement (SSC) at Earth, and a solar driver (e.g., CME) was clearly identified as the ICME's source. We introduce and employ the tH parameter, which is the time delay (in hours) of the maximum strength of the interplanetary magnetic field from the FD onset (as is marked via the SSC), and consequently derive three groups of FD events (I.e., the early, medium, and late ones). For each of these we examine the mean characteristics of the FDs and the associated IP variations per group, as well as the resulting correlations. In addition, we demonstrate the outputs of a superposed epoch analysis, which led to an average time profile of the resulting FDs and the corresponding IP variations, per group. Finally, we interpret our results based on the theoretical expectations for the FD phenomenon. We find that both the shock sheath and the ejecta are necessary for deep GCR depressions and that the FD amplitude (A0) is larger for faster-propagating ICMEs. Additionally, we note the importance of the turbulent shock-sheath region across all groups. Finally, we present empirical relations connecting A0 to SW properties.

2020 The Astrophysical Journal
SOHO 25