Gas-rich mergers and feedback are ubiquitous amongst starbursting radio galaxies, as revealed by the VLA, IRAM PdBI and Herschel
Ivison, R. J.; Smail, Ian; Ibar, E.; Greve, T. R.; Jarvis, M. J.; Amblard, A.; Arumugam, V.; Seymour, N.; Haas, M.; Röttgering, H. J. A.; De Breuck, C.; Lehnert, M. D.; Kovács, A.; Nesvadba, N. P. H.; Emonts, B. H. C.; Feain, I.; Wylezalek, D.
United Kingdom, United States, Germany, Australia, France, Netherlands
Abstract
We report new, sensitive observations of two z ∼ 3-3.5 far-infrared-luminous radio galaxies, 6C 1909+72 and B3 J2330+3927, in the 12CO J = 1-0 transition with the Karl Jansky Very Large Array and at 100-500 m using Herschel, alongside new and archival 12CO J = 4-3 observations from the Plateau de Bure Interferometer. We introduce a new colour-colour diagnostic plot to constrain the redshifts of several distant, dusty galaxies in our target fields. A bright SMG near 6C 1909+72 likely shares the same node or filament as the signpost active galactic nuclei (AGN), but it is not detected in 12CO despite ∼20 000 km s-1 of velocity coverage. Also in the 6C 1909+72 field, a large, red dust feature spanning ≈500 kpc is aligned with the radio jet. We suggest several processes by which metal-rich material may have been transported, favouring a collimated outflow reminiscent of the jet-oriented metal enrichment seen in local cluster environments. Our interferometric imaging reveals a gas-rich companion to B3 J2330+3927; indeed, all bar one of the eight z ≳ 2 radio galaxies (or companions) detected in 12CO provide some evidence that starburst activity in radio-loud AGN at high redshift is driven by the interaction of two or more gas-rich systems in which a significant mass of stars has already formed, rather than via steady accretion of cold gas from the cosmic web. We find that the 12CO brightness temperature ratios in radio-loud AGN host galaxies are significantly higher than those seen in similarly intense starbursts where AGN activity is less pronounced. Our most extreme example, where L CO 4-3'/L CO 1-0'>2.7, provides evidence that significant energy is being deposited rapidly into the molecular gas via X-rays and/or mechanical ('quasar-mode') feedback from the AGN, leading to a high degree of turbulence globally and a low optical depth in 12CO - feedback that may lead to the cessation of star formation on a time-scale commensurate with that of the jet activity, ≲10 Myr.