Binary planetary nebulae nuclei towards the Galactic bulge. II. A penchant for bipolarity and low-ionisation structures
DOI: 10.1051/0004-6361/200912176
Bibcode: 2009A&A...505..249M
Miszalski, B.; Moffat, A. F. J.; Parker, Q. A.; Acker, A.
France, Australia, Canada
Abstract
Considerable effort has been applied towards understanding the precise shaping mechanisms responsible for the diverse range of morphologies exhibited by planetary nebulae (PNe).
At least 10-20% of PNe have central stars (CSPN) with a close binary companion thought responsible for heavily shaping the ejected PN during common-envelope (CE) evolution, however morphological studies of the few available examples found no clear distinction between PNe and post-CE PNe. The discovery of several new binary central stars (CSPN) from the OGLE-III photometric variability survey has significantly increased the number of post-CE PNe available for morphological analysis to 30 PNe. High quality Gemini South narrow-band images are presented for most of the OGLE sample, while some previously known post-CE PNe are reanalysed with images from the literature. Nearly 30% of nebulae have canonical bipolar morphologies, however this could be as high as 60% once inclination effects are incorporated with the aid of geometric models. This is the strongest observational evidence yet linking CE evolution to bipolar morphologies. A higher than average proportion of the sample shows low-ionisation knots, filaments or jets suggesting they have a binary origin. These features are also common in nebulae around emission-line nuclei which may be explained by speculative binary formation scenarios for H-deficient CSPN. Based on observations made with Gemini South under programs GS-2008B-Q-65 and GS-2009A-Q-35.
2009
•
Astronomy and Astrophysics
eHST
170