Nonstorm time scattering of ring current protons by electromagnetic ion cyclotron waves
Xiao, Fuliang; Yang, Chang; Zhou, Qinghua; He, Zhaoguo; He, Yihua; Zhou, Xiaoping; Tang, Lijun
China
Abstract
We report correlated observation of enhanced electromagnetic ion cyclotron (EMIC) waves and dynamic evolution of ring current proton flux collected by Cluster satellite near the location L = 4.5 during March 26-27, 2003, a nonstorm period (Dst> -10). Energetic (5-30 keV) proton fluxes are found to drop rapidly (e.g., a half hour) at lower pitch angles, corresponding to intensified EMIC wave activities. By adopting a Gaussian fit to the observed spectra of EMIC waves, we present two-dimensional (2D) numerical simulations which demonstrate that EMIC wave can yield such decrements in proton flux within 30 minutes, consistent with the observational data. The current result provides a further understanding of ring current dynamics driven by wave-particle interaction under different geomagnetic activities.