On vortex motion in chromospheric network boundaries

Tavabi, E.

Iran

Abstract

A large percent of spicules shows a surge-like behavior on the solar limb, supporting a multi-component model with twisted threads. The counterpart of limb spicules foot-points is investigated on the disk, and this re-examination indicates that the interpretation of transverse motion of off-limb spicules could directly be related to rotational motion at the feet of disk spicules. Related bright elements move and vary in brightness on the timescales of chromospheric oscillations. The motions are similar to random displacements of the bright elements along the network boundaries with amplitudes of about 200 to 400 km, with evidence of "spinning" or vortex motion. We find a clear evidence and in several cases for splitting process and suggesting a formation mechanism for doublet (or multi-component) spicules. A general inter chromospheric network velocity pattern with twists existing before the emergence and eruption of spicules seems to be required. In this paper a helical- kink mode propagation consistent with the new evidence of spicule multiple structure is presented and provides an explanation for the origin of the Alfvenic wave propagation along the spicules. The evidence of spinning spicules remains unclear from disk Dopplergram observations, we use a 3D time slice "column" diagrams (2D in x and y and time in z being the 3d dimension) by consecutive partly transparent slices put in perspective to show the rotational behavior at the chromospheric rosettes, and provide a wealth of information on spinning motion, helical wave propagation and splitting.

2014 Astrophysics and Space Science
Hinode 4