Data-constrained Coronal Mass Ejections in a Global Magnetohydrodynamics Model

Gombosi, T. I.; Tóth, G.; Taktakishvili, A.; Jin, M.; Manchester, W. B.; van der Holst, B.; Sokolov, I.; Chulaki, A.; Mullinix, R. E.

United States

Abstract

We present a first-principles-based coronal mass ejection (CME) model suitable for both scientific and operational purposes by combining a global magnetohydrodynamics (MHD) solar wind model with a flux-rope-driven CME model. Realistic CME events are simulated self-consistently with high fidelity and forecasting capability by constraining initial flux rope parameters with observational data from GONG, SOHO/LASCO, and STEREO/COR. We automate this process so that minimum manual intervention is required in specifying the CME initial state. With the newly developed data-driven Eruptive Event Generator using Gibson-Low configuration, we present a method to derive Gibson-Low flux rope parameters through a handful of observational quantities so that the modeled CMEs can propagate with the desired CME speeds near the Sun. A test result with CMEs launched with different Carrington rotation magnetograms is shown. Our study shows a promising result for using the first-principles-based MHD global model as a forecasting tool, which is capable of predicting the CME direction of propagation, arrival time, and ICME magnetic field at 1 au (see the companion paper by Jin et al. 2016a).

2017 The Astrophysical Journal
SOHO 104