The eROSITA Final Equatorial-Depth Survey (eFEDS). The first archetypal quasar in the feedback phase discovered by eROSITA
Silverman, J. D.; Georgakakis, A.; Salvato, M.; Buchner, J.; Nandra, K.; Merloni, A.; Brusa, M.; Perna, M.; Toba, Y.; Dwelly, T.; Wolf, J.; Arcodia, R.; Terashima, Y.; Li, J. -Y.; Goulding, A.; Urrutia, T.; Schramm, M.; Nagao, T.; Liu, T.; Musiimenta, B.; Matsuoka, Y.
Italy, Germany, Japan, Taiwan, China, Spain, Greece, United States
Abstract
Theoretical models of the co-evolution of galaxies and active galactic nuclei (AGNs) ascribe an important role in the feedback process to a short, luminous, obscured, and dust-enshrouded phase during which the accretion rate of the supermassive black hole is expected to be at its maximum and the associated AGN-driven winds are also predicted to be maximally developed. To test this scenario, we have isolated a textbook candidate from the eROSITA Final Equatorial-Depth Survey (eFEDS) obtained within the performance and verification program of the eROSITA telescope on board the Spectrum Röntgen Gamma mission. From an initial catalogue of 246 hard X-ray selected sources that are matched with the photometric and spectroscopic information available within the eROSITA and Hyper Suprime-Cam consortia, three candidates quasars in the feedback phase have been isolated applying a diagnostic proposed previously. Only one source (eFEDS J091157.4+014327) has a spectrum already available (from SDSS-DR16, z = 0.603) and it unambiguously shows abroad component (full width at half maximum ~1650 kms−1) in the [OIII]5007 line. The associated observed L[OIII] is ~2.6 × 1042 erg s−1, one to two orders of magnitude higher than that observed in local Seyfert galaxies and comparable to those observed in a sample of z ~ 0.5 type 1 quasars. From the multi-wavelength data available, we derive an Eddington ratio (Lbol/LEdd) of ~0.25 and a bolometric correction in the hard X-ray band of kbol ~ 10, which is lower than the corrections observed for objects at similar bolometric luminosity. These properties, along with the outflow, the high X-ray luminosity, the moderate X-ray obscuration (LX∽1044.8 erg s−1, NH∽2.7 × 1022 cm−2), and the red optical colour, all match the prediction of quasars in the feedback phase from merger-driven models. Forecasting to the full eROSITA all-sky survey with its spectroscopic follow-up, we predict that by the end of 2024, we will have a sample of few hundred such objects at z= 0.5-2.