The MOSDEF Survey: Environmental Dependence of the Gas-phase Metallicity of Galaxies at 1.4 ≤ z ≤ 2.6
Barro, Guillermo; Siana, Brian; Shapley, Alice E.; Reddy, Naveen A.; Azadi, Mojegan; Shivaei, Irene; Kriek, Mariska; Freeman, William R.; Mobasher, Bahram; Price, Sedona H.; Sanders, Ryan L.; Zick, Tom; Fetherolf, Tara; Chartab, Nima; Coil, Alison L.; Leung, Gene
United States, Germany
Abstract
Using the near-IR spectroscopy of the MOSFIRE Deep Evolution Field survey, we investigate the role of the local environment in the gas-phase metallicity of galaxies. The local environment measurements are derived from accurate and uniformly calculated photometric redshifts with well-calibrated probability distributions. Based on rest-frame optical emission lines, [N II]λ6584 and Hα, we measure gas-phase oxygen abundances of 167 galaxies at 1.37 ≤ z ≤ 1.7 and 303 galaxies at 2.09 ≤ z ≤ 2.61, located in diverse environments. We find that at z ∼ 1.5, the average metallicity of galaxies in overdensities with M* ∼ 109.8 M⊙, 1010.2 M⊙, and 1010.8 M⊙ is higher relative to their field counterparts by 0.094 ± 0.051, 0.068 ± 0.028, and 0.052 ± 0.043 dex, respectively. However, this metallicity enhancement does not exist at higher redshift, z ∼ 2.3, where, compared to the field galaxies, we find 0.056 ± 0.043, 0.056 ± 0.028, and 0.096 ± 0.034 dex lower metallicity for galaxies in overdense environments with M* ∼ 109.8 M⊙, 1010.2 M⊙ and 1010.7 M⊙, respectively. Our results suggest that, at 1.37 ≤ z ≤ 2.61, the variation of mass-metallicity relation with local environment is small (<0.1 dex), and reverses at z ∼ 2. Our results support the hypothesis that, at the early stages of cluster formation, owing to efficient gas cooling, galaxies residing in overdensities host a higher fraction of pristine gas with prominent primordial gas accretion, which lowers their gas-phase metallicity compared to their coeval field galaxies. However, as the universe evolves to lower redshifts (z ≲ 2), the shock-heated gas in overdensities cannot cool down efficiently, and galaxies become metal-rich rapidly due to the suppression of pristine gas inflow and re-accretion of metal-enriched outflows in overdensities. * Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W.M. Keck Foundation.