Resolving subdwarf B stars in binaries by HST imaging

Heber, U.; Green, E. M.; Thejll, P.; Moehler, S.; Napiwotzki, R.

Germany, Denmark, United States

Abstract

The origin of subluminous B stars is still an unsolved problem in stellar evolution. Single star as well as close binary evolution scenarios have been invoked but until now have met with little success. We have carried out a small survey of spectroscopic binary candidates (19 systems consisting of an sdB star and late type companion) with the Planetary Camera of the WFPC2 onboard Hubble Space Telescope to test these scenarios. Monte Carlo simulations indicate that by imaging the programme stars in the R-band about one third of the sample (6-7 stars) should be resolved at a limiting angular resolution of 0.1 arcsec if they have linear separations like main sequence stars (``single star evolution''). None should be resolvable if all systems were produced by close binary evolution. In addition we expect three triple systems to be present in our sample. Most of these, if not all, should be resolvable. Components were resolved in 6 systems with separations between 0.2 arcsec and 4.5 arcsec. However, only in the two systems TON 139 and PG 1718+519 (separations 0.32 arcsec and 0.24 arcsec, respectively) do the magnitudes of the resolved components match the expectations from the deconvolution of the spectral energy distribution. These two stars could be physical binaries whereas in the other cases the nearby star may be a chance projection or a third component. Radial velocity measurements indicate that the resolved system TON 139 is a triple system, with the sdB having a close companion that does not contribute detectably to the integrated light of the system. Radial velocity information for the second resolved system, PG 1718+519, is insufficient. Assuming that it is not a triple system, it would be the only resolved system in our sample. Accordingly the success rate would be only 5% which is clearly below the prediction for single star evolution. We conclude that the distribution of separations of sdB binaries deviates strongly from that of normal stars. Our results add further evidence that close binary evolution is fundamental for the evolution of sdB stars. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. Based on observations collected at the German-Spanish Astronomical Center (DSAZ), Calar Alto, operated by the Max-Planck-Institut für Astronomie Heidelberg jointly with the Spanish National Commission for Astronomy. Based on data obtained at ESO (ESO proposal No. 58.D-0478, 65.H-0253(A)). Some observations reported here were obtained at the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution.

2002 Astronomy and Astrophysics
IUE eHST 70