The Three-dimensional Evolution of Ion-scale Current Sheets: Tearing and Drift-kink Instabilities in the Presence of Proton Temperature Anisotropy

Matteini, L.; Burgess, D.; Gingell, P. W.

United Kingdom

Abstract

We present the first three-dimensional (3D) hybrid simulations of the evolution of ion-scale current sheets, with an investigation of the role of temperature anisotropy and associated kinetic instabilities on the growth of the tearing instability and particle heating. We confirm the ability of the ion cyclotron and firehose instabilities to enhance or suppress reconnection, respectively. The simulations demonstrate the emergence of persistent 3D structures, including patchy reconnection sites and the fast growth of a narrow-band drift-kink instability, which suppresses reconnection for thin current sheets with weak guide fields. Potential observational signatures of the 3D evolution of solar wind current sheets are also discussed. We conclude that kinetic instabilities, arising from non-Maxwellian ion populations, are significant to the evolution of 3D current sheets, and two-dimensional studies of heating rates by reconnection may therefore over-estimate the ability of thin, ion-scale current sheets to heat the solar wind by reconnection.

2015 The Astrophysical Journal
Cluster 19