On the Signal-to-Noise Ratio in IUE High-Dispersion Spectra
Adelman, Saul J.; Leckrone, David S.
United States
Abstract
An observational and data reduction technique for fixed pattern noise (FPN) and random noise (RN) in fully extracted IUE high-dispersion spectra is described in detail, along with actual empirical values of signal-to-noise ratio (S/N) achieved. A co-addition procedure, involving SWP and LWR cameras observations of the same spectrum at different positions in the image format, provides a basis to disentangle FPN from RN, allowing each average amplitude, within a given wavelength interval, to be estimated as a function of average flux number. Empirical curves, derived with the noise algorithm, make it possible to estimate the S/N in individual spectra at the wavelengths investigated. The average S/N at the continuum level in well-exposed stellar spectra varies from 10 to 20, for the orders analyzed, depending on position in the spectral format. The co-addition procedure yields an improvement in S/N by factors ranging from 2.3 to 2.9. Direct measurements of S/N in narrow, line-free wavelength intervals of individual and co-added spectra for weak-lined stars yield comparable, or in some cases somewhat higher, S/N values and improvement factors.