Eclipse Mapping of the Accreting Magnetic White Dwarf in DP Leonis with HST

Holberg, J. B.; Liebert, James; Schmidt, Gary D.; Stockman, H. S.

United States

Abstract

We present time-resolved ultraviolet spectrophotometry of the AM Her system DP Leo (E1114+182), obtained with the Faint Object Spectrograph on the Hubble Space Telescope (HST) in 1991 October. During this period, the binary was in a low-activity state. Complementary optical spectrophotometry and spectopolarimetry were obtained in 1991 October and December, as well as in 1992 April when the object had entered a high-accretion state. The HST spectrophotometry reveals two UV-emitting components-a hot 'spot' (T approximately 50,000 K, very approximately) near the magnetic pole into which most material is accreted, and the white dwarf photosphere (T approximately 16,000 K), which dominates when the spot is not in view. Both components appear as rapid and gradual components in the ingress and egress of secondary eclipse, the latter indicating a normal white dwarf radius of 0.8 x 109 cm. The fractional area of the spot (f approximately 0.006) implied by the eclipse data is consistent with the observed UV flux and a minimum distance of 380 pc is similar to those found in other AM Her systems. The nearly identical eclipse light curves from the HST and earlier optical observations imply that the UV-emitting reprocessing area is not more extended than the cyclotron source of optical radiation in the accretion funnel. The timing of the onset of the bright phase indicated that the spot leads the secondary in orbital azimuth by approximately 3 deg.

1994 The Astrophysical Journal
eHST 35